Stability and Electronic Properties of Nitrogen Nanoneedles and Nanotubes

نویسندگان

  • Jenna L. Wang
  • Gerald H. Lushington
  • Paul G. Mezey
چکیده

The electronic structures and stability of nitrogen nanostructures, nanotubes, and fiberlike nanoneedles of various diameters, formed by units N2m (m = 2-6), were studied by quantum chemistry computational modeling methods. The geometrical structures with various cross-sections and terminal units, their energetic stability, and their rather peculiar electron density distributions were investigated. The tightest nitrogen nanoneedle (NNN) studied theoretically in this work is the structure (N4n with D2h symmetry, whereas the nitrogen nanotube (NNT) with the largest diameter discussed here is the structure (N12)n with D2 symmetry. These families of NNNs and NNTs can be considered as nanostructures not only for potential applications as devices in nanotechnology or as possible scaffold structures but also as ligands in synthetic chemistry and high-energy density materials (HEDMs). As a consequence of the lone-pair electrons present around the walls of these NNNs and NNTs, these nitrogen nanostructures and the nitrogen nano-bundles (NNB) formed by aligning and combining them using intermediate carbon atoms, can have highly variable electronic properties controlled by the changing charge environment. In particular, for extended systems based on the units studied here, the band gaps of each of these systems can be affected greatly by the local charge of the environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...

متن کامل

Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound

Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

Computational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor

Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2006